skip to main content


Search for: All records

Creators/Authors contains: "Micheli, Fiorenza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In an ocean that is rapidly warming and losing oxygen, accurate forecasting of species’ responses must consider how this environmental change affects fundamental aspects of their physiology. Here, we develop an absolute metabolic index (Φ A ) that quantifies how ocean temperature, dissolved oxygen and organismal mass interact to constrain the total oxygen budget an organism can use to fuel sustainable levels of aerobic metabolism. We calibrate species-specific parameters of Φ A with physiological measurements for red abalone ( Haliotis rufescens ) and purple urchin ( Strongylocentrotus purpuratus ). Φ A models highlight that the temperature where oxygen supply is greatest shifts cooler when water loses oxygen or organisms grow larger, providing a mechanistic explanation for observed thermal preference patterns. Viable habitat forecasts are disproportionally deleterious for red abalone, revealing how species-specific physiologies modulate the intensity of a common climate signal, captured in the newly developed Φ A framework. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. To promote the resilience and sustainability of coastal social-ecological systems (SES), it is necessary to implement adaptive and participatory management schemes. Successful examples of adaptation to the rapid change in coastal SES exist, but the question of whether these cases may be scalable to other regions and contexts remains. To this end, the present study aimed to identify how successful management strategies implemented in a fishing cooperative in Baja California, Mexico, can be adapted to other coastal SES. In particular, this study aimed to understand whether adaptive co-management of Isla Natividad (IN) could be replicated in Isla Todos Santos (ITS), a biophysically similar coastal SES to IN but with different results with regard to fisheries management. We found that the resource systems and resources in both SESs were similar. However, there were substantial differences with regard to governance and resource users. In Isla Natividad, the level of organization orchestrated by the resource users has contributed to establishing rules and sanctions that have supported the sustainable use of fishery resources. On the contrary, in ITS, the number of resource users and their socioeconomic attributes have impeded the establishment of effective rules or sanctions. The results of this study suggest that the ITS governance system needs to be improved in order to adapt some of the IN management strategies to increase its adaptive capacity. To promote successful adaptive management, it is necessary to develop context-specific adaptive pathways that contribute to greater resilience in the SESs of this region and in other regions that face similar conditions. 
    more » « less
  4. Abstract

    Fisheries are often characterized by high heterogeneity in the spatial distribution of habitat quality, as well as fishing effort. However, in several fisheries, the objective of achieving a sustainable yield is addressed by limiting Total Allowable Catch (TAC), set as a fraction of the overall population, regardless of the population's spatial distribution and of fishing effort. Here, we use an integral projection model to investigate how stock abundance and catch in the green abalone fishery in Isla Natividad, Mexico, are affected by the interaction of heterogeneity in habitat quality and fishing effort, and whether these interactions change with Allee effects—reproductive failure in a low-density population. We found that high-quality areas are under-exploited when fishing pressure is homogeneous but habitat is heterogeneous. However, this leads to different fishery outcomes depending on the stock's exploitation status, namely: sub-optimal exploitation when the TAC is set to maximum sustainable yield, and stability against collapses when the fishery is overexploited. Concentration of fishing effort in productive areas can compensate for this effect, which, similarly, has opposite consequences in both scenarios: fishery performance increases if the TAC is sustainable but decreases in overexploited fisheries. These results only hold when Allee effects are included.

     
    more » « less
  5. null (Ed.)
  6. Red tide causes significant damage to marine resources such as aquaculture and fisheries in coastal regions. Such red tide events occur globally, across latitudes and ocean ecoregions. Satellite observations can be an effective tool for tracking and investigating red tides and have great potential for informing strategies to minimize their impacts on coastal fisheries. However, previous satellite-based red tide detection algorithms have been mostly conducted over short time scales and within relatively small areas, and have shown significant differences from actual field data, highlighting a need for new, more accurate algorithms to be developed. In this study, we present the newly developed normalized red tide index (NRTI). The NRTI uses Geostationary Ocean Color Imager (GOCI) data to detect red tides by observing in situ spectral characteristics of red tides and sea water using spectroradiometer in the coastal region of Korean Peninsula during severe red tide events. The bimodality of peaks in spectral reflectance with respect to wavelengths has become the basis for developing NRTI, by multiplying the heights of both spectral peaks. Based on the high correlation between the NRTI and the red tide density, we propose an estimation formulation to calculate the red tide density using GOCI data. The formulation and methodology of NRTI and density estimation in this study is anticipated to be applicable to other ocean color satellite data and other regions around the world, thereby increasing capacity to quantify and track red tides at large spatial scales and in real time. 
    more » « less
  7. Abstract The ocean has recently taken centre stage in the global geopolitical landscape. Despite rising challenges to the effectiveness of multilateralism, attention to ocean issues appears as an opportunity to co-create pathways to ocean sustainability at multiple levels. The ocean science community, however, is not sufficiently well organised to advance these pathways and provide policy input. The Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services demonstrate how knowledge consensus and integration have been instrumental in charting global pathways and eliciting commitments to address, respectively, climate change and biodiversity loss. An equally impactful global platform with a thematic focus on ocean sustainability is needed. Here we introduce the International Panel for Ocean Sustainability (IPOS) as a coordinating mechanism to integrate knowledge systems to forge a bridge across ocean science-policy divides collectively. The IPOS will enrich the global policy debate in the Ocean Decade and support a shift toward ocean sustainability. 
    more » « less